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Abstract. Responding to a possible bioterror attack of Smallpox has become a major concern to governments, local public officials and health
authorities. This concern has been reflected in numerous studies that model and evaluate possible response strategies. Many of these studies
consider only vaccination policies and assume homogeneous mixing, where all instances of contacts in the population are equally likely. Such
a mixing pattern is rather unlikely to represent population interaction in a modern urban setting, which typically is separated into households on
the one hand, and into daily meeting sites such as schools and offices, on the other hand. In this paper we develop a two-level social interaction
model where an individual moves back and forth between home and a daily meeting site, possibly passing through a general meeting site such
as mass transit system or other crowded areas. Based on the model, we evaluate the effect of social mixing controls, situational awareness
of the public health system and mass vaccination on the spread of smallpox. It is shown that mixing controls and alertness of the response
system may have a significant impact on the spread of the epidemic. Some policy recommendations are discussed.
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1. Introduction

Responding to a bioterror attack of smallpox has become a ma-
jor concern to governments, local public officials, and health
authorities. This concern has been reflected in studies that
model and evaluate possible response policies against small-
pox [1–8]. A review of recent smallpox models, including a
classification, is presented by Furgeson et al. [7]. Another re-
view paper that compares analytic and simulative approaches
for modeling smallpox response policies is by Koopman [8]. A
common assumption in these models (e.g., [1–5]) is homoge-
neous mixing, where all instances of contacts between any two
members of the population are equally likely. In other words,
interactions in the population are uniformly random.

Such a mixing pattern is quite unlikely to represent actual
interactions in an urban setting where the population is typi-
cally divided into interconnecting subsets. Halloran et al. [6]
present a heterogeneous mixing simulation model for smallpox
where social structure is considered. The model is applied to a
small population of 2,000 people. A number of studies examine
nonhomogeneous mixing in other epidemic settings. Some so-
cial mixing patterns are studied in [9] and [10]. Ball and Lyne
[11] consider a population partitioned into households, with
local mixing within households and global mixing throughout
the population, and develop a vaccination optimization model.
The effects of a similar social structure are studied by Koop-
man et al. [12]. Other heterogeneous mixing models have been
studied by Kaplan [13,14] and Jacquez et al. [15] with respect
to the AIDS epidemic.

The concept of small world networks [16,17] is utilized by
several researchers to model nonhomogeneous transmission

in a population [18–20]. Eubank et al. [19] develop a detailed
large-scale urban traffic simulation, and find that interactions
among people form a strongly connected small-world-like
graph. They examine several response policies and conclude
that outbreaks can be contained by a combination of targeted
vaccination and early detection. Another recent model that
takes into account detailed social interaction is reported in
[21]. However, this microsimulation model does not represent
response measures and the reported results of the “pure”
epidemic model are based on only one replication of the
simulation.

In this paper we develop a two-level social interaction
model in which we represent households, daily meeting sites
such as schools and offices, and highly crowded sites such
as mass transit systems. The model comprises a set of SIR-
based difference-equations, which represents dynamic features
of daily contacts among individuals. We apply this model to a
large urban area (9 million people) and evaluate the effect of
situational awareness (early detection and response) and sev-
eral response measures, such as mass vaccination, quarantine,
closure, mass-transit shutdown, and voluntary self-quarantine
on the spread of the epidemic and on the total number of ca-
sualties. The proposed model is deterministic and therefore is
not intended to be predictive per se. The intention is to repre-
sent key social-structure and social-dynamics aspects in a con-
ceptually simple model, and to use this model for comparing
alternative response policies with respect to a large population.

Our difference-equation model is a special case of the model
suggested by Jacquez et al. [15]. Similar to [15], we divide the
population into population subgroups (households) and activ-
ity subgroups (daily meeting sites). Our model is positioned
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between the purely homogenous mixing models (e.g., [1,4,5])
and the detailed individual-based heterogeneous simulations
(e.g., [6,19]), but closer to the former than the latter. On the
one hand, the embedded social structure enables evaluating a
larger set of alternative response policies than purely homoge-
neous models, and on the other hand, it facilitates analysis of
large size urban populations (millions) that cannot be handled
by detailed individual simulations.

Applying the model to a set of commonly accepted epidemi-
ological parameters, it is shown that social mixing controls may
have significant effect on the spread of the epidemic. The ef-
fect is comparable to the effect of large-scale mass vaccination
effort, an effort that may be difficult to execute in reality. We
conclude that a combination of moderate mass vaccination ef-
fort with moderate implementation of mixing controls may be
an effective response to an outbreak of smallpox.

The rest of the paper is organized as follows. Section 2
describes the social structure that forms the base for our model
and analysis. Section 3 outlines the stages of the epidemic and
discusses possible response actions. The two-level model and
the basic data are described in Section 4. In Section 5, we report
the results of the analysis that is based on our model. Summary
and concluding remarks are presented in Section 6. A detailed
description of the difference-equation model is given in the
Appendix.

2. The two-level social structure

We assume that during each time period (i.e., a day) a person
interacts with other persons mainly in two places: at home,
which is referred from now on as household (HH), and in
the daily meeting site (DMS), such as school or workplace.
There may also be incidental contacts in public places such
as mass transit systems, restaurants, shopping malls, cinema
centers or theaters. We consider these contacts as occurring
in a general meeting site (GMS). During the course of a day,
a person is in (close) contact with a relatively small number
of individuals in the HH, then she meets colleagues, fellow
students, or co-workers in the DMS, and finally she may also
contact (mostly strangers) in the GMS. Figure 1 presents this
interaction pattern, We assume that the population is divided

Figure 1. Interaction pattern in a two-level social structure.

into m HHs of size h each. There are k DMSs, and one GMS. On
each day, members of a HH visit certain DMSs. We make two
assumptions regarding the mixing pattern. First, we assume
that on each day each individual in a HH chooses the DMS
randomly and independently. Second, we assume that, on any
given day, no two individuals in a certain HH visit the same
DMS. Since the number of DMSs (thousands) is much larger
than the size of a HH (3–5), the two assumptions are consistent.
Thus, members of the same HH do not interact in a DMS. They
interact in the HH and possibly in the GMS (e.g., if both use
the mass transit system on a certain day). Arguably, the two
aforementioned assumptions may not be very realistic in real
life where mixing may be even more segregated. Children go
to the same schools every day, and adults usually work in the
same offices every day. Also, two children from the same HH
may be enrolled in the same school. The mixing within each
subset of the population—HH, DMS, and GMS—is assumed
to be homogeneous. However, the contact rates (and hence
the transmission rates of the disease) are different in the three
environments; the transmission rate is highest in a HH and
lowest in the GMS.

Thus, our proposed two-level interaction model, which may
be viewed as a “structured” homogeneous mixing model, is
more of a small step away from the common “total” homo-
geneous mixing assumption towards the actual social mixing
pattern, than an attempt to model this complex pattern accu-
rately. The main objective is to use the model for evaluating
response policies that involve mixing control measures. The
model is robust in the sense that if for each subset of individ-
uals (HH, DMS or GMS) we assume that the infection rate
is inversely proportional to the size of the subset (see [22],
p. 305) then the results of the model are invariant to changes
in the number of HHs and DMSs. A similar invariance phe-
nomenon is observed by Watts and Strogatz [16] in the context
of small world networks. Sensitivity analysis to other mixing
parameters is presented in Section 5.

The spread of the epidemic is observed at discrete time pe-
riods (days). Each time period is divided into two parts: the
HH subperiod and the DMS subperiod. During the HH sub-
period individuals stay in their respective HHs (homes), while
during the DMS subperiod they visit their respective DMSs
(workplace, school, etc.). Some individuals may visit also the
GMS in-between the two periods. The state of the epidemic in
the HHs and DMSs is monitored at four points during a time
period: at the beginning and end of the HH subperiod, and at
the beginning and end of the DMS subperiod. At the beginning
of the HH subperiod, we observe the state of the members of a
HH after they return from the DMSs and possibly GMS. At the
end of the HH subperiod, we observe the transitions that have
occurred in the HH during that subperiod. Similar observations
apply to the DMS subperiod.

3. The epidemic and possible response actions

The stages of the epidemic are:

(i) Susceptible; a person is not infected but can get infected.
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(ii) Infected and vaccine sensitive; a person has been infected,
the disease is at the incubation stage (the person is not
infectious), vaccination is still effective.

(iii) Infected and vaccine insensitive; a person has been in-
fected, the disease is at the incubation stage (the person
is not infectious), vaccination is ineffective.

(iv) Infectious; a person is infectious (symptoms appear and
the disease can be transmitted).

(v) Quarantined; a person is put in a quarantine.

We assume that following quarantine, a person is re-
moved; he is either healthy and immune to the disease, or
dead.

The state of a HH is defined as the most advanced stage of a
member in the HH. That is, a HH is at state x, x = i, ii, iii, iv, v,
if at least one member of the HH is at stage x and no member
is at stage y, y > x . Therefore, a HH is said to be infected if
at least one member in the HH is infected, but no one is infec-
tious. An infected HH may be vaccine sensitive (stage (ii)) if
all of its infected members are vaccine sensitive. Otherwise, it
is vaccine insensitive (stage (iii)). Clearly, some members in a
vaccine insensitive infected HH may be susceptible (stage (i))
or infected and vaccine sensitive (stage (ii)). A HH is said to be
infectious (stage (iv)) if at least one member in the HH is or has
been infectious, and it is said to be quarantined (stage(v)) if it
has been put in quarantine. Otherwise, a HH is said to be sus-
ceptible (stage (i)). The progression of the epidemic in a HH is
similar to the progression of a given individual in the sense that
there are no state bypasses. If a HH is at state x on day t, it can
either remain in that state on day t +1, if no individual at stage
x in that HH progressed to the next stage, or otherwise move to
state x +1. We assume that vaccination and quarantine are ap-
plied to HHs and not to individuals. The vaccination efficacy is
considered to be very high (∼95% [1,6]). For the purpose of the
comparative analysis, it would be sufficient to assume perfect
and immediate vaccination efficacy. That is, a person at stages
(i) or (ii), who is vaccinated, will never progress in the epi-
demic. Less than perfect efficacy would in fact strengthen the
conclusions of our analysis. Therefore, susceptible or infected
and vaccine sensitive HHs that are vaccinated, are removed
from further consideration (see figure 2). We do not assume
reduction in contagiousness due to the vaccination of a vaccine
insensitive individual. We also ignore the potential mortality
caused by the vaccine, which is negligible [3]. Once an infec-
tious individual is detected, his entire HH is quarantined. If
that HH has not been previously vaccinated, all asymptomatic
members are vaccinated upon entering the quarantine. Only
infectious HHs are quarantined. Since there are no indirect
transmissions in smallpox, a DMS is said to be infectious on a
certain day if at least one infectious individual (stage iv) visits
it on that day.

HHs at states (iii) and (iv) may be vaccinated. Also, quar-
antined HH (stage (v)) could have been previously vaccinated.
Figure 2 presents the transitions among stages for individuals
and the transitions among states for HHs.

Figure 2. The stages of the epidemic.

Since we assume perfect vaccination efficacy, vaccinated
HHs at stages (i) and (ii) are immune. Households at stages (iii)
and (iv) may be vaccinated, but only the individuals at stages
(i) and (ii) in those HHs become immune. The rest (those at
stages (iii) and (iv)) are unaffected by the vaccination.

Without loss of generality we assume that transitions in the
stage of a HH, including vaccination and quarantining, occur
during the HH period. Infectious DMSs and infectious HHs
(at stage (iv)) may generate new infected individuals.

We consider the following response actions:

� Mass vaccination;

� Quarantine;

� Shutdown of GMSs (e.g., shutdown of a mass transit sys-
tem);

� Gradual closure of DMSs (e.g., closing up schools); and

� Encouraging people to stay home.

Note that while the first four actions are under the complete
control of the authorities, the fifth action is not. The authorities
may decide to what extent to utilize the media for encouraging
people to stay home, but no one can really predict what would
be the effect of such announcements. In this paper we explore
however the effect of self quarantine to determine its relative
impact compared to other response actions.

Mass vaccination and quarantine are applied to HHs. HHs
are summoned to vaccination centers and get vaccinated. If
an infectious case is detected, then his/her HH is immediately
quarantined. If that HH has not been previously vaccinated
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in the mass vaccination process, all of its non-symptomatic
members get vaccinated.

The response actions are initiated after a certain number of
individuals become infectious. We assume that the vaccination
and the DMS closure processes start after there are �V/D in-
fectious individuals. This number is the vaccination/DMS clo-
sure threshold. The shutdown of the GMS is also triggered by
the number of infectious cases. The GMS is shut down if this
number exceeds �G . The thresholds �V/D and �G indicate
how fast can the authorities respond to the outbreak. Smaller
thresholds imply better situational awareness, and therefore
faster response. While the GMS is shut down completely fol-
lowing a decision to that effect, the process of closing up the
DMSs is gradual and takes time. Once the DMS closure pro-
cess is initiated, it proceeds with a rate δ. On each given day,
a fraction δ of the still open DMSs is closed down and remain
closed until the epidemic is over.

We assume that a fractionγ of the population passes through
the GMS, and at any point in time a proportion β of the (not
yet quarantined) population complies with requests of the au-
thorities and voluntarily stay at home. Although in reality one
would assume that this rate may change during the course of
the epidemic, we assume it is constant throughout. This pa-
rameter simply indicates the general population compliance.
Finally, infectious HHs are quarantined at a rate ρ and recover
from the quarantine at a rate θ .

4. The model and its data

The proposed model is a special case of the structured mixing
model presented in [20] in the context of the AIDS epidemic.
A feature in our model is the clear distinction among three pos-
sible mixing sites: households, daily meeting sites and general
meeting sites. Also, compared to past approaches that typi-
cally analyze alternative vaccination policies, this model can
analyze also the effects of social mixing-control measures and
the agility of the public health-care system.

The model is a set of deterministic difference-equations
shown in the Appendix. It is a deterministic with embedded
transition rates among stages. The spread of the disease is
observed at two levels: high level, at which we observe the
transitions among sets of HHs and DMSs, and low level, at
which we observe the transitions within sets. At any time period
t, we record the number of sets of a certain type (e.g., HHs at
stage (i), Infectious DMSs) at the high level, and the average
profile (composition) of disease stages within a set, at the low
level. We denote numbers associated with stages (i), (ii), (iii),
(iv) and (v) with the letters S, A, B, I and Q, respectively.
Capital letters denote the cardinality of sets, and lower case
letters indicate average numbers of individuals within a HH,
GMS or DMS. For example, B(t) is the number of HHs at stage
(iii) at time t, and sB(t), aB(t), bB(t) are the average numbers
of individuals in such HHs that are at stages (i), (ii), and (iii),
respectively. These average numbers, which are computed by
simply dividing the total number of individuals in that status
by the number of corresponding sets (see equation (2) and the

Appendix), form a profile of a set. The difference equations,
shown in the Appendix, describe transitions among sets at the
high level, and among profiles at the low level.

Recall that at each time period (day) the epidemic is ob-
served four times: at the beginning and end of the HH sub-
period, and the beginning and end of the DMS sub-period.

The symbol X j (t) denotes the number of sets (HHs or
DMSs) of type X at time t. The index j is 0,1 where j = 0
(1) indicates a beginning (end) of a sub-period (HH or DMS).

Let,

S Number of susceptible HHs.

A Number of infective and vaccine sensitive HHs.

B Number of infective vaccine insensitive HHs.

BV Number of infective vaccine insensitive HHs that have
been vaccinated (Only individuals at stage B remain
infective, the rest—S and A individuals—are vaccinated
and removed).

I Number of infectious HHs that have not been vaccinated
yet. I0 are newly infected HHs.

IV Number of infectious HHs that have been vaccinated.
V I0 are newly infected HHs.

Q Number of isolated HHs.

QV Number of isolated, previously vaccinated, HHs.

D Number of open DMSs.

ID Number of open infectious DMSs.

In the model the values of these parameters are real numbers.
The notation at the low level is of the form y j

X (t), where
y indicates the stage of the epidemic, X is the type of HH or
DMS, and j is a 0,1 parameter as before. Thus, for example:

s0
A(t) Average number of susceptible individuals, at the

beginning of the t-th HH period, in an infective and
vaccine sensitive HH that has not been vaccinated
yet.

s1
I V (t) Average number of susceptible individuals, at the

end of the t-th HH period, in an infectious HH that
has been vaccinated.

a0
A(t) Average number of vaccine sensitive infective indi-

viduals, at the beginning of the t-th HH period, in
an infective HH that has not been vaccinated yet.

b1
BV (t) Average number of vaccine insensitive infective in-

dividuals, at the end of the t-th HH period, in an
infective vaccine insensitive HH that has been vac-
cinated.

i1
I (t) Average number of infectious individuals, at the end

of the t-th HH period, in an infectious HH that has
not been vaccinated yet.

s0
I D(t) Average number of susceptible individuals in an in-

fectious DMS at the beginning of the DMS period.
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Table 1
General model parameters and their default values.

Default
Parameter Description values Reference

M Number of HHs (integer) 3,000,000 Assumed
h Average size of a HH (integer) 3 Assumed
K Number of DMSs (integer) 10000 Assumed
αH Infection rate in a HH (R0 = 6) 0.67 Based on [23]
αD Infection rate in a DMS (R0 = 4) 0.0015 Based on [23]
αG Infection rate in the GMS (R0 = 3) 0.0000002 Based on [23]
p Disease stage (ii) exit rate 0.3 [1]
q Disease stage (iii) exit rate 0.12 [1]
ρ Disease stage (iv) exit rate 0.3 [1]
θ Disease stage (v) exit rate 0.083 [1]
γ Visit rate at the GMS 0.5 Assumed
δ Closure rate of DMSs 0 Assumed
β Fraction of infectious individuals that 0 Assumed

stay home
�V/D Vaccination/DMS closure Threshold 20 Assumed

(integer)
�G GMS shutdown threshold (integer) No Closure Assumed
V Vaccination capacity (HHs/Day) 100,000 Assumed

(integer)

In the model the values of these parameters are real numbers.
In addition, we denote

aNew
X (t) Average number of newly infected individuals in

an infectious DMS, who belong to a HH of type
X, X = S, A, B, BV, I, I V . aNew

I D (t) is the average
total number of newly infected individuals in an
infectious DMS.

Note that while the number of individuals in a HH remains
constant throughout the epidemic, the average number of indi-
viduals in a DMS changes over time as HHs are isolated and
infectious persons stay home.

The general parameters of the model and their default (Base
Case 1) values are shown in table 1.

We consider a large urban area; 9 million people and 10000
DMSs. A HH comprises 3 individuals. The infection rates in
the three possible mixing sites correspond to basic reproductive
rate values of 6, 4 and 3, for HH, DMS and GMS, respectively.
The basic reproductive rate R0 is the number of secondary
infections generated by an infectious individual if all the rest
of the population is susceptible ([22], p. 17). The range of
R0 values is consistent with the estimates in [23] (see also
sensitivity analysis with respect to these parameters in Section
5). The infection rate α in a susceptible population of size X
is given by α = R0

Xτ
, where R0 is the basic reproductive rate

and τ is the average duration of the infectious period. The
values of the transition rates p, q, ρ and θ are based on [1].
The parameters δ and V are decision variables, �V/D and �G

indicate situational awareness and responsiveness capabilities,
and β reflects the possible effect of a self-quarantine campaign.
There are no known references for the possible values of these
parameters. The values chosen in table 1 below and table 2
in Section 5 seem reasonable and are subject to sensitivity
analysis later on.

Table 2
Values of policy parameters in base Cases 1 and 2.

Parameter Description Base case 1 Base case 2

δ Closure rate of DMSs 0 .03
β Fraction of infectious individuals 0 .25

that stay home
�V/D Vaccination/DMS Closure 20 20

Threshold
�G GMS Shutdown Threshold No Closure 70
V Vaccination Capacity (HHs/Day) 100,000 0

To demonstrate the basic idea of the model we present a
sample of three typical equations. In the Appendix we present
the full model with some additional detailed explanations.

1. High level transition during the HH subperiod:

B1(t) =




B0(t)(1 − q)b0
B (t)

︸ ︷︷ ︸
Expected number of
HHs at state iii that
remain in that state.

+ A0(t)
(
1 − (1 − p)a0

A(t)

︸ ︷︷ ︸
Expected number of
HHs at state ii that

progressed to state iii.

)


× (1 − v(t)). (1)

Equation (1) gives the number of HHs of type B (not yet
vaccinated) at the end of the HH subperiod.

2. Low level transition:

s1
B(t) = 1

B1(t)

×




s0
B(t)B0(t)

(
1 − q)b0

B (t)

︸ ︷︷ ︸
Total expected number of
susceptibles (stage i) in
HHs at state iii that have

not changed their state

+ s0
A(t)A0(t)(1 − (1 − p)a0

A(t)
)

︸ ︷︷ ︸
Total expected number of
susceptibles (stage i) in

HHs that progressed
from state ii to iii.




× (1 − v(t)). (2)

Equation (2) gives the average number of susceptible indi-
viduals in HHs of type B.

3. Low level in a DMS.

aNew
ID (t) = αDs0

I Di0
I D. (3)

Equation (3) gives the average number of newly infected in
an infectious DMS.

5. Analysis

Two base cases are considered. In Base Case 1, shown in
table 1, we assume that the response policy is based only on
mass vaccination and quarantine of infectious HHs. Other re-
sponse measures such as DMSs closure, GMS shutdown, and
compliance with self-imposed quarantine are not implemented.
In base case 2 there is no mass vaccination, only quarantine
(and vaccination) of infectious HHs that are detected. How-
ever, DMSs are gradually closed up, the GMS is shut down af-
ter a while, and a certain proportion of the population (not yet
quarantined) stays home. We assume that the initial bio-attack
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results in ten infected people in each one of five DMSs, plus
ten infected in the GMS.

Table 2 presents the values of policy parameters that change
in Base Case 2.

Based on these parameters, Base Case 1 (vaccination, no
mixing control, no self quarantine) results in 2,138 infectious
individuals, in addition to the casualties of the initial attack.
Base Case 2 (no vaccination, mixing control, self quarantine)
results in 2,144 additional casualties. The total numbers of
casualties in both cases are essentially equal. That is, preventive
measures that include closure of DMSs at a rate of 3% per day,
shutting down the GMS when there are 70 infectious cases,
and 25% “stay-home” compliance is equivalent to the mass
vaccination of 100,000 HHs (300,000 individuals) per day with
no other mixing controls. However, the epidemic evolves over
time in these two cases differently, as shown in figure 3.

Figure 4 presents the daily number of people in quarantine
in both base cases.

As shown in figure 3, the epidemic in Base Case 1 is shorter,
but with a higher daily peak than Base Case 2. Figure 4 shows
the ramification of this effect; higher demand in Base Case 1
for peak quarantine capacity than in Base Case 2. The results
of the two base cases indicate that under reasonable assump-
tions mixing controls may be as effective as mass vaccination.
Clearly, this comparison is largely theoretical. It is highly un-
likely that in reality the response to the epidemic will rely en-
tirely on mass vaccination or entirely on mixing controls and
voluntary behavior of the public. The results of the comparison

Figure 3. Daily numbers of newly infectious.

Figure 4. Daily numbers of people in quarantine.

Figure 5. The effect of DMSs’ closure rate δ.

underscore however the potential benefits from combining the
two types of epidemic control measures.

Next we explore the effect of each one of the control mea-
sures δ, β, �V/D and �G on the mass vaccination policy in
Base Case 1. Figure 5 shows the effect of DMSs’ closure rate
δ, (�V/D = 20). A closure rate of 0.03 (as in Base Case 2)
results in a decrease of more than 50% in the number of ca-
sualties compared to Base Case 1. Figure 6 depicts the effect
of voluntary self quarantine. While the value of β is not fully
controllable, the authorities can affect it by encouraging people
to minimize their stay outside their home—a situation similar
to cases of severe weather. If the effect of this campaign is that
at any time during the epidemic 10% of the population stays
voluntarily at home, then the number of casualties decreases
by more than 40%. Figures 7 and 8 present the effect of
situational awareness and responsiveness of the public health
system. Absent DMS closure in Base Case 1, the parameter
�V/D applies only to the vaccination process. Notice that the
effect of this parameter is linear. A “slower” system that needs
100 cases to get started may result in number of casualties that
is more than 3.5 times the number in Base Case 1. Figure 8
shows the effect of the GMS shutdown threshold �G , which is
more moderate than the other parameters. Shutting down, say,
the mass transit system when there are 200 infectious individ-
uals in the population results in 20% reduction in the number
of casualties compared to Base Case 1.

Figure 6. The effect of self quarantine β.
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Figure 7. The effect of vaccination threshold �V/D .

Figure 8. The effect of GMS shutdown threshold �G .

Figure 9. The effect of mass vaccination V—base Case 2.

Next we consider Base Case 2 and examine the effect of
adding mass vaccination. Figure 9 presents this effect for three
values of δ : 0 (no closure), .01 and .03.

Consider Base Case 3 shown in table 3, which is a mixture
of Base Cases 1 and 2.

Table 3
Base case 3.

Parameter Description Base case 3

δ Closure rate of DMSs .02
β Fraction of the population that stays home .1
�V/D Vaccination/DMS closure threshold 20
�G GMS shutdown threshold 100
V Vaccination capacity (HHs/Day) 70,000

Figure 10. Daily number of newly infectious—base Cases 1, 2, 3.

Base Case 3 represents a reasonable and cautious scenario
in terms of vaccination capacity, system responsiveness and
possible effects of mixing controls. The estimated number of
casualties in this case is 1264—more than 40% decrease com-
pared to Base Cases 1 and 2. Similarly to figure 3, figure 10
compares the three base cases over the period of the epidemic.

While the peak of the epidemic in Base Case 3 is about
the same as in Base Case 2, the epidemic is eradicated much
faster—as fast as in Base Case 1. Base Case 3 has a clear
advantage over Base Cases 1 and 2; under these mixture of
responses the epidemic is shorter and less harmful.

Finally, we analyze the sensitivity of Base Case 3 to some
of the general model parameters given in table 1. First recall
that the independent mixing assumptions imply that our model
is essentially a “structured” homogeneous mixing model and
therefore the results are not affected by the actual numbers
of HHs or DMSs. Since R0 is fixed for any population size,
the infection rate is inversely proportional to the size of the
relevant population and therefore the actual segmentation of
the population into HHs and DMSs does not affect the re-
sults. This segmentation however facilitates the analysis of
social control measures. Arguably, in more realistic (and com-
plex) mixing patterns this property would not hold. Figure 11
depicts the effect of varying the basic reproductive rates in
three scenarios. In all three scenarios we assume that R0 re-
mains the same at 6. In Scenario 1 we assume lower infective-
ness in the DMSs and GMSs—R0(DMS) = 3, R0(GMS) =
2, while in Scenario 3 we assume higher infectiveness—
R0(DMS) = 5, R0(GMS) = 4. Scenario 2 is the default case—
R0(DMS) = 4, R0(GMS) = 3. When the infectiveness outside
the household is relatively small (scenario 1) Base Case 2

Figure 11. The effect of varying R0.
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Figure 12. The effect of varying the GMS visit intensity γ .

performs better than Base Case 1. This relation is reversed
for relatively high values of R0. In the absence of mass vac-
cination, the high infectiveness cannot be effectively handled
by mixing controls only. For all three scenarios Base Case 3
results in the least number of casualties.

Figure 12 presents the sensitivity of the results to the as-
sumption regarding the proportion of the population that passes
through the GMS.

Low rate of visits to the GMS (20%) imply that shutting it
down would not affect significantly the number of casualties.
Therefore Base Case 1 is more effective than Base case 2. This
relation is reversed for a high visit rate (70%). Once again, for
all three visit rates, Base Case 3 results in the least number of
casualties.

6. Summary and conclusions

In this paper a deterministic difference-equation model is pre-
sented that is one step closer to the reality of social inter-
action from homogeneous mixing. The objective is to gain
insight about the possible effects of epidemic response mea-
sures on real-size population (millions). The model is applied
to three base cases that reflect three response approaches to an
outbreak of the disease: mass vaccination, population mixing
control, and combination of the two. It is shown that mixing
controls—imposed or voluntary—are effective. Specifically,
moderate and gradual closure of schools, offices, etc., and
some success in persuading the population to stay home as
much as possible, can decrease the number of casualties by
considerable numbers—especially when combined with mass
vaccination (see figures 5 and 6). We conclude that a response
policy that combines moderate (and realistic) effort of mass
vaccination and moderate application of mixing controls, may
be preferred to a policy that relies entirely on more extensive
implementation of one approach or the other. The effectiveness
of the proposed “hybrid” policy, represented by Base Case 3,
is manifested in the total number of casualties and in the length
of the epidemic (see figure 10). This policy seems to be consis-
tently superior to the two others when some input assumptions
vary (see figures 11 and 12). The closest reference to this paper
is [19] where the authors report results from implementing a
highly resolved agent-based simulation for simulating the pro-
gression of smallpox in Portland, Oregon, USA (1.5 million
people). The focus there is on evaluating alternative vaccina-

tion policies, and measuring the effect of delays in implement-
ing the vaccination process. Although evaluated on different
scales, the results shown in figure 4 in [19] are consistent with
our findings as shown in figure 7. Another recent work that
relates to our paper is reported in [21]. The spread of smallpox
in the vicinity of Stockholm, Sweden, is modeled by a high-
resolution simulation—similar to the Portland simulation in
[19]. The model, called MicroPox, captures detailed social in-
teractions based on real Swedish demographic statistics. How-
ever, the model does not represent response measures and the
reported results of the “pure” epidemic model are based on
only one replication of the simulation.

As mentioned before, the model presented in this paper is
neither predictive nor prescriptive. Its purpose is to facilitate
in-context evaluation of alternative response policies. Since it
is deterministic, it may give different outcomes compared to
models that consider stochastic mixing (see Koopman et al.
[12]). The modeling approach presented in this paper may be
further explored to represent better social interactions and to
account for stochasticity. These extensions may be important
areas for future research.
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Appendix: Difference-equations model

Selected equations—(7), (16), (22), (53) and (76)—are anno-
tated for clarification.

Appendix A. HH subperiod

Let

v(t) = Min

{
1,

V

S0(t) + A0(t) + I 0(t)

}
(4)

v(t) is the vaccination rate.

High Level

S1(t) = S0(t)(1 − v(t)) (5)

A1(t) = A0(t)(1 − p)a0
A(t)(1 − v(t)) (6)

B1(t)︸ ︷︷ ︸
# of HHs at
stage (iii) at

the end of the
HH period

= [
B0(t)︸ ︷︷ ︸

# of HHs at
stage (iii) at

the beginning
of the HH

period

(1 − q)b0
B (t)

︸ ︷︷ ︸
Proportion of

HHs at stage (iii)
that stay at that

stage

+ A0(t)︸ ︷︷ ︸
# of HHs at
stage (ii) at

the beginning
of the HH

period
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× (
1 − (1 − p)a0

A(t)
)

︸ ︷︷ ︸
Proportion of

HHs at stage (ii)
that moved up

to the next stage

]
(1 − v(t))︸ ︷︷ ︸

Fraction of HHs
not yet vaccinated

(7)

BV 1(t) = BV 0(t)(1 − q)b0
BV (t) + [

B0(t)(1 − q)b0
B (t)

+ A0(t)(1 − (1 − p)a0
A(t))

]
v(t) (8)

I 1
0 (t) = B0(t)

[
1 − (1 − q)b0

B (t)
]
(1 − v(t)) (9)

I V 1
0 (t) = BV 0

[
1 − (1 − q)b0

BV (t)
]

+ B0(t)
[
1 − (1 − q)b0

B (t)
]
v(t) (10)

I 1(t) = I 0(t)(1 − v(t))(1 − ρ) (11)

I V 1(t) = (I V 0(t) + I 0(t)v(t))(1 − ρ) (12)

Q(t) = I 0(t)ρ + Q(t − 1)(1 − θ ) (13)

QV (t) = I V 0(t)ρ + QV (t − 1)(1 − θ ). (14)

Low Level

Susceptible HH

s1
S(t) = s0

S(t) = h (15)

a1
S(t) = b1

S(t) = i1
S(t) = a0

S(t) = b0
S(t) = i0

S(t) = 0︸ ︷︷ ︸
HH at stage (i) comprises susceptible members only

. (16)

Infective vaccine sensitive HH

s1
A(t) = s0

A(t) (17)

a1
A(t) = a0

A(t) (18)

b1
A(t) = b0

A(t) = 0 (19)

i1
A(t) = i0

A(t) = 0. (20)

Infective vaccine insensitive HH

s1
B(t) = 1

B1(t)

[
s0

B(t)B0(t)(1 − q)b0
B (t)

+ s0
A(t)A0(t)(1 − (1 − p)a0

A(t)
]
(1 − v(t)) (21)

a1
B(t)︸ ︷︷ ︸

Average number
of individuals at

stage (ii) in a HH at
stage (iii) at the end

of the HH period

= 1

B1(t)︸ ︷︷ ︸
Number of HHs

at stage (iii) at the
of the HH period

×




a0
B(t)(1 − p)B0(t)(1 − q)b0

B (t)

︸ ︷︷ ︸
Number of individuals that remain at

state (ii) in HHs that remain at state (iii)

+ a0
A(t)

(
1 − p

1 − (1 − p)a0
A(t)

)
A0(t)

(
1 − (1 − p)a0

A(t)
)

︸ ︷︷ ︸
Number of individuals that remain at state (ii) in HHs that moved

up from state (ii) to state (iii)




× (1 − v(t))︸ ︷︷ ︸
Fraction of the population

not yet vaccinated

(22)

b1
B(t) = 1

B1(t)

[(
b0

B(t) + a0
B p

)
B0(t)(1 − q)b0

B (t)

+ a0
A(t)

p

1 − (1 − p)a0
A(t)

A0(t)(1 − (1 − p)a0
A(t))

]

× (1 − v(t)) (23)

i1
B(t) = i0

B(t) = 0. (24)

Vaccinated Infective vaccine insensitive HH

s1
BV (t) = s0

BV (t) = a1
BV (t) = a0

BV (t) = i0
BV (t) = i1

BV (t) = 0

(25)

b1
BV (t) = 1

BV 1(t)

[
b0

BV (t)BV 0(t)(1 − q)b0
BV (t)

+
[

(b0
B(t) + a0

B p)B0(t)(1 − q)b0
B (t)

+ a0
A(t)

p

1 − (1 − p)a0
A(t)

A0(t)(1 − (1 − p)a0
A(t))

]
v(t)

]

(26)

Newly Infectious HH (I0)

s1
I0

(t) = s0
B(t) (27)

a1
I0

(t) = a0
B(t)(1 − p) (28)

b1
I0

(t) = b0
B(t)

(
1 − q

1 − (1 − q)b0
B (t)

)
+ a0

B(t)p (29)

i1
I0

(t) = b0
B(t)

q

1 − (1 − q)b0
B (t)

. (30)

Vaccinated Newly Infectious HH

s1
I V0

(t) = s0
I V0

(t) = a1
I V0

(t) = a0
I V0

(t) = 0 (31)

b1
I V0

(t) = 1

I V 1
0 (t)

{
b0

BV (t)

(
1 − q

1 − (1 − q)b0
BV (t)

)

× BV 0(t)
(
1 − (1 − q)b0

BV (t)
)

+ b0
B(t)

(
1 − q

1 − (1 − q)b0
B (t)

)

× B0(t)
(
1 − (1 − q)b0

B (t)
)
v(t)

}
(32)
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i1
I V0

(t) = 1

I V 1
0 (t)

{
qb0

BV (t)BV 0(t) + qb0
B(t)B0(t)v(t)

}

(33)

Infectious HH

s1
I = s0

I

(
1 − αH i0

I

)
(34)

a1
I (t) = a0

I (t)(1 − p) + αH s0
I i0

I (35)

b1
I (t) = b0

I (t)(1 − q) + a0
I (t)p (36)

i1
I (t) = i0

I (t) + b0
I (t)q. (37)

Vaccinated Infectious HH

s1
I V (t) = s0

I V (t) = a1
I V (t) = a0

I V (t) = 0 (38)

b1
I V (t) = b0

I V (t)(1 − q) (39)

i1
I V (t) = i0

I V (t) + b0
I V (t)q (40)

Isolated Not Previously Vaccinated HH

(Assumption: Individuals not previously vaccinated are vac-
cinated immediately upon arrival at the quarantine).

s1
Q(t) = s0

Q(t) = a1
Q(t) = a0

Q(t) = 0 (41)

bQ(t) = 1

Q(t)

{
(1 − q)bQ(t − 1)Q(t − 1) + (1 − q)b0

I (t)I 0(t)ρ
}

(42)

iQ(t) = iQ(t − 1) + 1

Q(t)

{
qbQ(t − 1)Q(t − 1)

+ (qb0
I (t) + i0

I (t))I 0(t)ρ
}

(43)

D(t) = (1 − δ)D(t − 1) (52)

ID(t)︸ ︷︷ ︸
Number of

open infected
DMSs

= D(t)︸︷︷︸
Number of
open DMSs




1 −
(

1 − ic1
I (t)

K

)I 1(t)

Probability that
no newly infectious
visits a certain DMS︷ ︸︸ ︷(
1 − ic1

I0
(t)

K

)I 1
0 (t) (

1 − ic1
I V (t)

K

)I V 1(t)(
1 − ic1

I V0
(t)

K

)I V 1
0 (t)

︸ ︷︷ ︸
Probability that at least one infectious individual visits a ceratain DMS




(53)

Isolated Previously Vaccinated HH

s1
QV (t) = s0

QV (t) = a1
QV (t) = a0

QV (t) = 0 (44)

bQV (t) = 1

QV (t)

{
bQV (t − 1)(1 − q)QV (t − 1)

+ b0
I V (t) (1 − q) I V 0(t)ρ

}
(45)

iQV (t) = iQV (t − 1) + 1

QV (t)

{
qbQV (t − 1)QV (t − 1)

+ (qb0
I V (t) + i0

I V (t))I V 0(t)ρ
}

(46)

At the end of the HH-cycle, the total number of susceptibles
and vaccine sensitive infected are:

s1
Total(t) = S1(t)h + A1(t)s1

A(t) + B1(t)s1
B(t)

+ I 1
0 (t)s1

I0
(t) + I 1(t)s1

I (t) (47)

a1
Total(t) = A1(t)a1

A(t) + B1(t)a1
B(t) + I 1

0 (t)a1
I0

(t) + I 1(t)a1
I (t).

(48)

And the total number of infectious individuals is:

i1
Total(t) = I 1

0 (t)i1
I0

(t)) + I 1(t)i1
I (t))

+ I V 1
0 (t)i1

I V0
(t)) + I V 1(t)i1

I V (t)) (49)

The number of commuting infectious individuals from an in-
fectious HH is

ic1
I (t) = (1 − β)i1

I (t) (50)

ic1
I0

(t), ic1
I V (t) and ic1

I V0
(t) are defined similarly.

The total commuting infectious individuals is:

ic1
Total(t) = I 1

0 (t)ic1
I0

(t)) + I 1(t)ic1
I (t))

+ I V 1
0 (t)ic1

I V0
(t)) + I V 1(t)ic1

I V (t). (51)

Appendix B. Transition HH → GMS → DMS

DMS

Comments:: (1) Equation (53) is a simple extension of the well-
known Urn Model [24]. (2) Suppose D(t) = uK , u < 1.

Only a proportion u of the DMSs are open and therefore only
a proportion u of the population that would otherwise leave
home actually does it. Since each member of a HH goes to a
different DMS, this means that only uic infectious individuals
leave home. uic/uK = ic/K .

Individuals

We assume that the contacts in the GMS occur between the
HH cycle and the DMS cycle.

iGMS(t) = γ
D(t)

K
ic1

Total(t) (54)
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sGMS(t) = γ s1
Total(t) (55)

The number of newly infected individuals at the GMS is:

aNew
GMS(t) = αGsGMSiGMS (56)

Let aNew
GS (t), aNew

GA (t), aNew
GB (t) and aNew

GI (t) denote the number
of newly infected at the GMS that belong to belong to HHs at
stages, (i), (ii), (iii) and (iv), respectively. Clearly, (aNew

GS (t) +
aNew

GA (t) + aNew
GB (t) + aNew

GI (t)) = aNew
GMS(t). Since the probability

that a newly infective belongs to a certain type of a HH is
proportional to the number of susceptibles in such a HH, we
have:

aNew
GS (t) = aNew

GMS(t)
S1(t)h

s1
Total(t)

(57)

aNew
GA (t) = aNew

GMS(t)
A1(t)s1

A(t)

s1
Total(t)

(58)

aNew
GB (t) = aNew

GMS(t)
B1(t)s1

B(t)

s1
Total(t)

(59)

aNew
GI (t) = aNew

GMS(t)
I 1
0 (t)s1

I0
(t) + I 1(t)s1

I (t)

s1
Total(t)

. (60)

Infectious DMS

i0
I D(t) = D(t)

K

ic1
Total(t)

I D(t)
(61)

s0
I D(t) = s1

Total(t) − aNew
GMS(t)

K
. (62)

Since response actions and transitions among disease stages are
assumed to take place during the HHs cycle, we do not need to
track either the noninfectious open DMSs or the individuals
who are at the latent stages (vaccine sensitive and vaccine
insensitive) of the disease.

Appendix C. DMS cycle

Since transitions among disease stages are assumed to take
place only in the HHs, the DMSs do not change their status
during this cycle. The only parameter of interest during the
DMS cycle is the number of newly infected.

Individuals

Infectious open DMS
The number of newly infected individuals in an open DMS is:

aNew
I D (t) = αDs0

I Di0
I D (63)

A newly infected individual may belong to a susceptible HH,
an infective HH, or an infectious HH.

Let aNew
DS (t), aNew

DA (t), aNew
DB (t) and aNew

DI (t) denote the num-
ber of newly infectives that belong to HHs at stages, (i), (ii), (iii)
and (iv), respectively. Clearly, (aNew

DS (t) + aNew
DA (t) + aNew

DB (t) +
aNew

DS (t)) = aNew
I D (t), Since the probability that a newly infective

belongs to a certain type of HH is proportional to the number
of susceptibles in such a HH, we have:

aNew
DS (t) = aNew

I D (t)
S1(t)h

s1
Total(t)

(64)

aNew
DA (t) = aNew

I D (t)
A1(t)s1

A(t)

s1
Total(t)

(65)

aNew
DB (t) = aNew

I D (t)
B1(t)s1

B(t)

s1
Total(t)

(66)

aNew
DI (t) = aNew

I D (t)
I 1
0 (t)s1

I0
(t) + I 1(t)s1

I (t)

s1
Total(t)

(67)

Appendix D. DMS—HH transition

HH

Let

S0(t) = S1(t − 1)

(
1 − aNew

DS (t − 1)

S1(t − 1)

)I D(t−1)

×
(

1 − aNew
GS (t − 1)

S1(t − 1)

)
(68)

A0(t) = A1(t − 1) + S1(t − 1) − S0(t) (69)

B0(t) = B1(t − 1) (70)

BV 0(t) = BV 1(t − 1) (71)

I 0(t) = I 1(t − 1) + I 1
0 (t − 1) (72)

I V 0(t) = I V 1(t − 1) + I V 1
0 (t − 1). (73)

Individuals

Susceptible HH

s0
S(t) = h (74)

a0
S(t) = b0

S(t) = i0
S(t) = 0. (75)
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Infective vaccine sensitive HH

s0
A(t)︸︷︷︸

Average number
of susceptible
individuals in

a HH at stage (ii)
at the beginning
of a HH period

= 1

A0(t)︸ ︷︷ ︸
Number of

HHs at stage (ii)
at the beginning
of a HH period




A1(t − 1)s1
A(t − 1)︸ ︷︷ ︸

Number of susceptible
Individuals in a HH at

stage (ii) at the end
of the HH period in

the previous time step.

− I D(t − 1)
(
aNew

DA (t − 1) + aNew
DS (t − 1)

)
︸ ︷︷ ︸

New infected individuals at stage (ii) who
got infected in the DMS

− (
aNew

GA (t − 1) + aNew
GS (t − 1)

)
︸ ︷︷ ︸

New infected individuals at stage (ii)
who got infected in the GMS

+ (S1(t − 1) − S0(t))︸ ︷︷ ︸
Number of susceptible HHs for

which at least one member has been
infected in the GMS/DMS.

h




(76)

a0
A(t) = 1

A0(t)

[
A1(t − 1)a1

A(t − 1) + I D(t − 1)
(
aNew

DA (t − 1) + aNew
DS (t − 1)

) + aNew
GA (t − 1) + aNew

GS (t − 1)
]

(77)

b0
A(t) = 0 (78)

i0
A(t) = 0. (79)

Infective vaccine insensitive HH

s0
B(t) = 1

B0(t)

[
B1(t − 1)s1

B(t − 1)

− I D(t − 1)aNew
DB (t − 1) − aNew

GB (t − 1)
]

(80)

a0
B(t) = 1

B0(t)

[
B1(t − 1)a1

B(t − 1)

+ I D(t − 1)aNew
DB (t − 1) + aNew

GB (t − 1)
]

(81)

b0
B(t) = b1

B(t − 1) (82)

i0
B(t) = 0. (83)

Infectious HH

s0
I (t) = 1

I 0(t)

[
I 1(t − 1)s1

I (t − 1) + I 1
0 (t − 1)s1

I0
(t − 1)

− I D(t − 1)aNew
DI (t − 1) − aNew

GI (t − 1)
]

(84)

a0
I (t) = 1

I 0(t)

[
I 1(t − 1)a1

I (t − 1) + I 1
0 (t − 1)a1

I0
(t − 1)

+ I D(t − 1)aNew
DI (t − 1) + aNew

GI (t − 1)
]

(85)

b0
I (t) = I 1(t − 1)b1

I (t − 1) + I 1
0 (t − 1)b1

I0
(t − 1)

I 0(t)
(86)

i0
I (t) = I 1(t − 1)i1

I (t − 1) + I 1
0 (t − 1)i1

I0
(t − 1)

I 0(t)
. (87)
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